b) Dựng hình bình hành ABCD
Tam giác ABC đều:
Kẻ BH⊥AC ⇒BD⊥AC
Tam giác HAB vuông tại H:
BH=AB.sinA=a.sin60=\(\dfrac{a\sqrt{3}}{2}\)
BD=2AH=\(2.\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\)
Vecto v=vectoBA+vectoBC=vectoBD
|vecto v|=|vectoBD|=BD=\(a\sqrt{3}\)
b) Dựng hình bình hành ABCD
Tam giác ABC đều:
Kẻ BH⊥AC ⇒BD⊥AC
Tam giác HAB vuông tại H:
BH=AB.sinA=a.sin60=\(\dfrac{a\sqrt{3}}{2}\)
BD=2AH=\(2.\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\)
Vecto v=vectoBA+vectoBC=vectoBD
|vecto v|=|vectoBD|=BD=\(a\sqrt{3}\)
Cho tam giác ABC cố định, trên BC lấy điểm I thay đổi. Tìm tập hợp điểm M thoả vectoIM=vectoIA+vectoIC
cho hình chữ nhật ABCD ,AB =3 ;BC =4 .M,N là trung điểm của BC và CD .Tính a) độ dài vectoAB +vectoAC +vectoAD b)độ dài vecto AM +vecto AN
Bài 1 : Cho tam giác ABC đều cạnh a. Gọi M là trung điểm của BC. Xác định và tính theo a độ dài vectơ BM + vectơ BA
Cho tam giác abc vuông tại b. AB=3a,BC=4a, vẽ điểm M sao cho Vecto MA+vecto MB-vecto MC=vecto 0,N là trung điểm của AC.Tính a dộ dài của vecto MN
cho tam giác đều ABC có cạnh bằng a ,H là trung điểm của BC.Vecto CH + vecto CH có độ dài là:
a.Hình chữ nhật ABCD. AB = 4a, BC = 2a, AC∩ BD = {O}. M là trung điểm CD
Tính tổng vecto AB+OM
b.Cho tam giác ABC đều. AB = a. M, N là trung điểm AC và AB. Tính tổng vecto CM +BN
| Cho tam giác ABC có trọng tâm G, gọi M, N, P lần lượt là trung điểm của BC, CA, AB |
a) Tìm các vectơ bằng vecto MN b) Dựng điểm I sao cho vecto AG bằng vecto PI
c) Tứ giác BGMI là hình gì ?
cho tam giác ABC vuông tại B, AB= 3a, BC= 4a
a. Hãy dựng điểm D sao cho vecto AD= vecto BC
b. Tính độ dài của vecto BA+ BC theo a
giúp em voiiii:(
Cho tam giác đều ABC có cạnh bằng a. Tính độ dài các vecto CA+BC
AB+AC
AB+CB