Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC ở D. Từ D vẽ đường thẳng vuông góc với BC tại E và cắt đường thẳng AB tại F. Chứng minh :
a) AB = BE b) AF = EC c) BD vuông góc CF
Bài 1: Cho tam giác ABC có góc B = C . Vẽ tia phân giác của góc B cắt AC tại E, tia phân giác của góc C cắt AB tại D
a) Chứng minh BE = CD.
b) Gọi giao của BE và CD là O. Chứng minh OB = OC, OD = OE.
c) Chứng minh AO vuông góc với BC
cho tam giác ABC vuông tại A .(AB<AC).tia phân giác của góc ABC cắt AC tại D, DN vuông góc với BC tại N
a) chứng minh tam giác ABD = tam giác NBD.
b)gọi K là giao điểm của hai đường thẳng BA và ND . chứng minh tam giác AKC cân .vẽ EH vuông góc với BC tại H . chứng minh BC+ AH>EK+AB
cho ΔABC, A<90°, AB=AC, BE vuông góc với AC tại E, CF vuông góc với AB tại F:
a, chứng minh ΔEAB=ΔFAC
b, I là giao điểm của BE và CF. Chứng minh ΔAIE = ΔAIF, từ đó suy ra AI là tia phân giác của góc BAC.
c, Chứng minh EF//BC
Cho tam giác ABC có tia phân giác góc B cắt AC ở M . Trên tia đối của tia AB lấy điểm E sao cho BE = BC . Trên tia đối của tia BC lấy điểm F sao cho BF = AB . Chứng minh : a)Các đường thẳng AF , BM , EC song song với nhau b) Nếu BM vuông góc với AC thì AE = FC c) Nếu BM vuông góc với AC và góc ABC = 90o thì AC = EC = EF = FA
Cho tam giác ABC vuông tại A AB bé hơn AC tia phân giác của góc ABC cắt AC tại D. lấy điểm E trên cạnh BC sao cho be = AB. a) chứng minh tam giác ABD bằng tam giác ABD. b) Chứng minh DE vuông góc với AC. c) tia ED cắt BA tại M chứng minh EC = AM
Cho tam giác ABC vuông tại A. Tia phân giác BD của góc B. Trên cạnh BC lấy điểm E sao cho BE = BA.
a) So sánh các đoạn thẳng AD và DE.
b) Chứng minh: AE vuông góc BD
c) Đường thẳng đi qua C và vuông góc với tia BD cắt tia BA tại F. Chứng minh: tam giác BFC cân và F; D; E thẳng hàng.
cho tam giác ABC có AB<AC. Trên cạnh BC lấy điểm M sao cho AM=AB. Gọi E là trung điểm của BM. a) chứng minh rằng AE là tia phân giác của góc A. b) Chứng minh rằng AE vuông góc BM. c) tia AE cắt BC tại K, chứng minh rằng KB=KM