\(\sqrt{x^2-4x-1}=2\)
ĐKXĐ:\(\left[{}\begin{matrix}x\ge\sqrt{5}+2\\x\le-\sqrt{5}+2\end{matrix}\right.\)
\(\Leftrightarrow x^2-4x-1=4\)
\(\Leftrightarrow x^2-4x-5=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)(t/m)
Vậy Phương trình đã cho có tập nghiệm \(S=\left\{-1;5\right\}\) .
\(\sqrt{x^2-4x-1}=2\)
\(\Leftrightarrow x^2-4x-1=4\)
\(\Leftrightarrow x^2-4x-1-4=0\)
\(\Leftrightarrow x^2-4x-5=0\)
\(\Leftrightarrow x^2-5x+x-5=0\)
\(\Leftrightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
vậy...