\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{2}.\sqrt{4-\sqrt{15}}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5-2.\sqrt{5}.\sqrt{3}+3}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\text{|}\sqrt{5}-\sqrt{3}\text{|}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)=\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right).2=\left(16-15\right).2=2\)