Đặt \(A=\sqrt{4+\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(=2\left(\sqrt{4+\sqrt{15}}-\sqrt{3-\sqrt{5}}\right)\)
\(\Rightarrow\sqrt{2}A=2\left(\sqrt{8+\sqrt{15}}-\sqrt{6-2\sqrt{5}}\right)\)
\(=2\left(\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\right)\)
\(=2\left(\left|\sqrt{3}+\sqrt{5}\right|-\left|\sqrt{5}-1\right|\right)\)
\(=2\left(\sqrt{3}+\sqrt{5}-\sqrt{5}+1\right)\)
\(=2\sqrt{3}+2\)
\(\Rightarrow A=\sqrt{6}+\sqrt{2}\)