\(\sqrt{8}=2\sqrt{2}\approx2,83< 4\)
\(\Rightarrow\sqrt{8}-4< 0\) nên \(\sqrt{\sqrt{8}-4}\) không xác định
\(\Rightarrow\)sai đề
\(\sqrt{8}=2\sqrt{2}\approx2,83< 4\)
\(\Rightarrow\sqrt{8}-4< 0\) nên \(\sqrt{\sqrt{8}-4}\) không xác định
\(\Rightarrow\)sai đề
a)\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\frac{6\sqrt{2}-4}{3-\sqrt{2}}\)
b)\(\sqrt{2-\sqrt{3}}-\sqrt{\frac{3}{2}}\)
c)\(\frac{\sqrt{30}-\sqrt{2}}{\sqrt{8-\sqrt{15}}}-\sqrt{8-\sqrt{49+8\sqrt{3}}}\)
d) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
e)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
f)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
g)\(\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
1.)\(\sqrt{11+4\sqrt{6}}\)
2.)\(\sqrt{7-4\sqrt{3}}-\sqrt{8+2\sqrt{15}}\)
3.)\(\sqrt{4-2\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
4.)\(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
5.)\(\sqrt{4a^2-12a+9}vớia\ge\dfrac{3}{2}\)
6.)\(\sqrt{a^2-6a+9}+\sqrt{9+64a^2-48a}với\dfrac{3}{8}< a< 3\)
Tính
a/ \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
b/ \(\sqrt{\dfrac{\sqrt{5}}{8\sqrt{5}+3\sqrt{55}}}.\left(3\sqrt{2}+\sqrt{14}\right)\)
1/Tính
A=\(\dfrac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
B=\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}\)
C=\(\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
D=\(\dfrac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}\)
2/So sánh
\(\sqrt{2017^2-1}-\sqrt{2016^2-1}\) và \(\dfrac{2.1016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)
Tính:
a,y=2\(+\sqrt{17-4\sqrt{9}+4\sqrt{5}}\)
b,t=\(\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right)\)
c,x=\(\sqrt{19+8\sqrt{3}}+\sqrt{19-8\sqrt{3}}\)
1)\(\sqrt{12}\)\(-\)\(\sqrt{27}\)\(+\)\(\sqrt{48}\)
2)(\(\sqrt{24}+\sqrt{20}-\sqrt{80}\))\(\div\)5
3)2\(\sqrt{27}-\sqrt{\dfrac{16}{3}}\)\(-\)\(\sqrt{48}-\)\(\sqrt{8\dfrac{1}{3}}\)
4) \(\dfrac{1}{\sqrt{5}-\sqrt{3}}\)\(-\)\(\dfrac{1}{\sqrt{5+\sqrt{3}}}\)
So sánh:
a, 5+\(\sqrt{ }\)2 và 4+ \(\sqrt{ }\)3
b, \(\)\(\sqrt{ }\)8 - \(\sqrt{ }\)2 và \(\sqrt{ }\)5 - \(\sqrt{ }\)3
c, \(\sqrt{ }\)5 - \(\sqrt{ }\)3 và \(\sqrt{ }\)10 - \(\sqrt{ }\)7
a/ \(\dfrac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
b/ \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
c/ \(\sqrt{2-\sqrt{3}}\left(\sqrt{5}+\sqrt{2}\right)\)
d/ \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
e/ \(\dfrac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Làm ơn, giúp mik với. Mik đang cần gấp lắm!
\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\\ \\ \\ \sqrt{\frac{9}{4}-\sqrt{2}}\\ \\ \\ Sosanh2\sqrt{27}va\sqrt{147}\\ \\ \\ 2\sqrt{15}va\sqrt{59}\\ \\ \\ 2\sqrt{2}-1va2\\ \\ \\ \frac{\sqrt{3}}{2}va1\\ \\ \\ -\frac{\sqrt{10}}{2}va-2\sqrt{5}\\ \\ \\ \sqrt{6}-1va3\\ \\ \\ 2\sqrt{5}-5\sqrt{2}va1\\ \\ \\ \frac{\sqrt{8}}{3}va\frac{3}{4}\\ \\ \\ -2\sqrt{6}va-\sqrt{23}\\ \\ \\ 2\sqrt{6}-2va3\\ \\ \\ \sqrt{111}-7va4\)
Xếp theo thứ tự tăng dần: \(21,2\sqrt{7},15\sqrt{3},-\sqrt{123}\) ; \(28\sqrt{2},\sqrt{14},2\sqrt{147},36\sqrt{4}\)
giảm dần: \(6\sqrt{\frac{1}{4}},4\sqrt{\frac{1}{2}},-\sqrt{132},2\sqrt{3},\sqrt{\frac{15}{5}}\); \(-27,4\sqrt{3},16\sqrt{5},21\sqrt{2}\)
a) \(\sqrt{13-4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
b) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
c) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
d) \(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
e) \(\sqrt{9+4\sqrt{5}}\)
f) \(\sqrt{23+8\sqrt{7}}\)