a) \(\sqrt{27\cdot48\cdot\left(1-a\right)^2}\)
\(=3\sqrt{3}\cdot4\sqrt{3}\cdot\left|1-a\right|\)
\(=36\cdot\left(a-1\right)=36a-36\)
b) \(\dfrac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}\)
\(=\dfrac{1}{a-b}\cdot\left(a-b\right)\cdot a^2\)
\(=a^2\)
a) \(\sqrt{27\cdot48\cdot\left(1-a\right)^2}\)
\(=3\sqrt{3}\cdot4\sqrt{3}\cdot\left|1-a\right|\)
\(=36\cdot\left(a-1\right)=36a-36\)
b) \(\dfrac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}\)
\(=\dfrac{1}{a-b}\cdot\left(a-b\right)\cdot a^2\)
\(=a^2\)
Bài 1: Rút gọn
a) \(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right).\dfrac{x+2\sqrt{x}}{\sqrt{x}}\) với x>0 x≠4
b)\(\left(2+\dfrac{3+\sqrt{3}}{\sqrt{3}-1}\right).\left(2-\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)
c)\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)
Bài 2: Cho P=\(\left(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}\) với a>0, a≠1, a≠2
a)Rút gọn P
b)Tìm a ∈ Z để P có giá trị nguyên
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2
1) Rút gọn các đa thức:
a) \(\dfrac{1}{m.n^2}\cdot\sqrt{\dfrac{m^2.n^4}{5}}\) với \(m< 0;n\ne0\)
b) \(\sqrt{\dfrac{m^4}{9-12m+4m^2}}\) với \(m\le1,5\)
c) \(\dfrac{a-1}{\sqrt{a}-1}:\sqrt{\dfrac{\left(a-1\right)^4}{a-2\sqrt{a}+1}}\) với \(0< a< 1\)
d) \(\dfrac{a-b}{\sqrt{a+b}}:\sqrt{\dfrac{\left(a-b\right)^2}{a\left(a+b\right)}}\) với \(a>b>0\)
2) Chứng minh rằng:
\(\dfrac{a-b}{b^2}:\sqrt{\dfrac{a^2-2ab+b^2}{a^2.b^2}}=\left\{{}\begin{matrix}a\left(a>b>0\right)\\-a\left(0< a< b\right)\end{matrix}\right.\)
Bài 1:Thu gọn và tính:
a)A=\(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\) với\(a^2=6-3\sqrt{3};b^2=2+\sqrt{3}\)
b)B=\(\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\)với\(x=1+\sqrt{5}\)
Bài 2: Tìm GTLN GTNN của \(C=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\)
mọi người ngươi giúp mình với
thu gọn biểu thức sau:
a)\(\sqrt{16\left(a-3\right)^2}\) với a\(\ge\)3
b)\(9\sqrt{\left(9-a\right)}^2\) với a\(\le\)9
c)\(a^3b^6\dfrac{\sqrt{3}}{a^6b^4}vớia< 0,b\ne0\)
d)\(\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}\) với a>b>0
e)\(\dfrac{\left(a+\sqrt{ab}+b\right)-\left(a\sqrt{a}-b\sqrt{b}\right)}{a+\sqrt{ab}+b}\)
f) \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{a-b}\)
Rút gọn các biểu thức:
\(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{x-4}{3\sqrt{x}}\)
\(B=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}+\dfrac{6-7\sqrt{a}}{a-4}\right).\left(\sqrt{a}+2\right)\)
Rút gọn:
\(A=\sqrt{\left(a-3\right)^2}-3a\) với a < 3
\(B=4a+3-\sqrt{\left(2a-1\right)^2}\) với a > 1/2
\(C=\dfrac{4}{a^2-4}\sqrt{\left(a-2\right)^2}\) với a < 2
\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{a^2+6a+9}{16}}\) với a < -3
Rút gọn:
a,\(\sqrt{4\left(a-3\right)^2}với\) \(a\ge3\)
\(b,\sqrt{9\left(b-2\right)^2}với\) \(b< 2\)
\(c,\sqrt{27.48\left(1-a\right)^2}với\) \(a>1\)
\(d,\sqrt{5a}.\sqrt{45a}-3a\) \(với\) \(a\ge0\)
\(e,\dfrac{\sqrt{48x^3}}{\sqrt{3x^5}}với\) \(x>0\)
Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!