\(\sqrt{20}\cdot\sqrt{72}\cdot\sqrt{4,9}\)
\(=\sqrt{7056}\)
\(=84\)
\(\sqrt{20}.\sqrt{72}.\sqrt{4,9}=\sqrt{20.72.4,9}=\sqrt{7056}=84\)
\(\sqrt{20}\cdot\sqrt{72}\cdot\sqrt{4,9}\)
\(=\sqrt{7056}\)
\(=84\)
\(\sqrt{20}.\sqrt{72}.\sqrt{4,9}=\sqrt{20.72.4,9}=\sqrt{7056}=84\)
I.
1, \(\sqrt{8}-3\sqrt{32}+\sqrt{72}\)
2, \(6\sqrt{12}-2\sqrt{48}+5\sqrt{75}-7\sqrt{108}\)
3, \(\sqrt{20}+3\sqrt{45}-6\sqrt{80}-\dfrac{1}{3}\sqrt{125}\)
4, \(2\sqrt{5}-\sqrt{125}-\sqrt{80}\)
5, \(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}\)
\(\sqrt{6,5+\sqrt{ }12}-\sqrt{6.5-\sqrt{12}+2\sqrt{6}}\)
\(\sqrt{94-42\sqrt{5}-\sqrt{94+42\sqrt{5}}}\)
\(\sqrt{50}-2\sqrt{72}-3\sqrt{2}+\sqrt{32}\)
\(\left(2\sqrt{5}-\sqrt{125}+\sqrt{80}\right)\sqrt{5}\)
\(\left(5\sqrt{2}-3\sqrt{32}+\sqrt{200}\right)\sqrt{8}\)
(\(\sqrt{45}+\frac{1}{2}\sqrt{20}-4\sqrt{5}-\sqrt{\left(1-15^2\right)}\))\(^2 \)
\(\sqrt{9-4\sqrt{5}-3\sqrt{80}}\)
Giúp mình với ạ ! Mai mình nộp rồi
câu 3: Thực hiện phép tính:
a) \(\sqrt{72}+\dfrac{2}{5}.\sqrt{50}-\sqrt{242}\)
b) \(5\sqrt{32}-7\sqrt{50}+2\sqrt{98}-3\sqrt{72}\)
c) \(-5\sqrt{18}+2\sqrt{45}-7\sqrt{20}+3\sqrt{72}\)
d) \(\dfrac{1}{3}\sqrt{27}+\sqrt{12}-\dfrac{4}{5}\sqrt{75}-\dfrac{1}{2}\sqrt{147}\)
e) \(9\sqrt{54}+2\sqrt{112}-4\sqrt{252}+3\sqrt{96}\)
f) \(4\sqrt{12}+2\sqrt{75}-\dfrac{1}{3}\sqrt{3}+\sqrt{147}\)
g) \(\dfrac{1}{2}\sqrt{200}+\sqrt{18}-2\sqrt{8}+6\sqrt{6}\)
\(\sqrt{21}-\sqrt{5}và\sqrt{20}-\sqrt{6}\)
câu 1: rút gọn biểu thức
\(\sqrt{11}+6\sqrt{2}-3+\sqrt{2}\)
câu 2:áp dụng quy tắc khai phương 1 tích tính:
a) \(\sqrt{90.6,4}\)\(5\sqrt{32}-7\sqrt{50}+2\sqrt{98}-3\sqrt{72}\)
b) \(\sqrt{75.48}\)
B1: tính : a, \(\sqrt{400.0,81}\)
b, \(\sqrt{\dfrac{5}{27}.\dfrac{3}{20}}\)
c, \(\sqrt{\left(-5\right)^2.3^2}\)
d, \(\sqrt{\left(2-\sqrt{5}\right)^2.\left(2+\sqrt{5}\right)^2}\)
Tính:
\(\left(\sqrt{8}-5\sqrt{2}+\sqrt{20}\right)\sqrt{5}-3\sqrt{\dfrac{1}{5}}\)
\(\sqrt{3,2\:.\:7,2\:.\:49\:}\)
\(\sqrt{2,5\: .\: 12,5\: .20\: }\)
\(\sqrt{1,5}\) . \(\sqrt{\dfrac{2}{3}}\)
\(\sqrt{50\:.\:98\:}\)
Giúp mình vss mình đang cần gấp , cảm ơn nhìuuu ạaa🌷
\(2\sqrt{10}.5\sqrt{8}.\sqrt{2}\)
Tính
\(\sqrt{20}.\left(5\sqrt{3}+\sqrt{5}\right)\)
\(\left(3\sqrt{2}+\sqrt{3}\right)^2\)