a) \(2\sqrt[3]{3}=\sqrt[3]{2^3}.\sqrt[3]{3}=\sqrt[3]{2^3.3}=\sqrt[3]{24}\)
Ta có : \(24>23\), nên \(\sqrt[3]{24}>\sqrt[3]{23}\)
Vậy \(2\sqrt[3]{3}>\sqrt[3]{23}\)
b) Ta có :
\(11=\sqrt[3]{11^3}=\sqrt[3]{1331}\)
Từ đó suy ra \(33< 3\sqrt[3]{1333}\)
a) \(2\sqrt[3]{3}=\sqrt[3]{2^3}.\sqrt[3]{3}=\sqrt[3]{2^3.3}=\sqrt[3]{24}\)
Ta có : \(24>23\), nên \(\sqrt[3]{24}>\sqrt[3]{23}\)
Vậy \(2\sqrt[3]{3}>\sqrt[3]{23}\)
b) Ta có :
\(11=\sqrt[3]{11^3}=\sqrt[3]{1331}\)
Từ đó suy ra \(33< 3\sqrt[3]{1333}\)
Tính (không dùng bảng số hay máy tính bỏ túi) :
a) \(\sqrt[3]{-343}\)
b) \(\sqrt[3]{0,027}\)
c) \(\sqrt[3]{1,331}\)
d) \(\sqrt[3]{-0,512}\)
So sánh các cặp số sau:
a)6 và \(2\sqrt[3]{26}\)
b)\(2\sqrt[3]{6}\) và \(\sqrt[3]{47}\)
So sánh :
a) \(\sqrt[3]{123}\) và 5
b) \(5\sqrt[3]{6}\) và \(6\sqrt[3]{5}\)
so sánh
\(;\sqrt{2}+1vs\sqrt[3]{7+5\sqrt{2};}\) \(-6\sqrt[3]{7}\&7\sqrt[3]{\left(-6\right)}\)\(;\sqrt[3]{4}+\sqrt[3]{7}\&\sqrt[3]{11}\)\(;\sqrt[3]{10}-2vs\sqrt[3]{2}\)
Tìm số lớn hơn:
a)\(3\sqrt[3]{2}\) và \(\sqrt[3]{53}\)
b)22 và \(3\sqrt[3]{394}\)
So sánh:M=\(\sqrt[3]{7+5\sqrt{2}}\)+\(\sqrt[3]{7-5\sqrt{2}}\) và N=\(\dfrac{4}{\sqrt[3]{9}}\)
Tính:
a)\(\sqrt[3]{125}.\sqrt[3]{\dfrac{16}{10}}.\sqrt[3]{-0,5}\)
b) \(\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)
c) \(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}\)
d) \(\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}\)
e) E=\(\sqrt[3]{2+10\sqrt{\dfrac{1}{27}}}+\sqrt[3]{2-10\sqrt{\dfrac{1}{27}}}\)
a/so sánh \(\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}\) và \(\sqrt{3}+1\)
b/so sanh \(\sqrt{\sqrt{2}+2\sqrt{\sqrt{2}-1}}+\sqrt{\sqrt{2}-2\sqrt{\sqrt{2}-1}}\) và 1,9
1.Chứng minh:\(\dfrac{a+\sqrt{2+\sqrt{5}.}\sqrt{\sqrt{9-4\sqrt{5}}}}{3\sqrt{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}-}3\sqrt{a^2}+\sqrt[3]{a}}}\)=\(-\sqrt[3]{a}-1\)
2.Rút gọn: \(\left(\dfrac{a^3\sqrt[]{a}-2a^3\sqrt{b}+\sqrt[3]{a^2}-\sqrt[3]{b}}{\sqrt[3]{a^2-\sqrt[3]{ab}}}+\dfrac{\sqrt[3]{a^2b}-\sqrt[3]{ab^2}}{\sqrt[3]{a}-\sqrt[3]{b}}\right)1\dfrac{1}{\sqrt[3]{a^2}}\)