a) 5 và 3√123:
Ta có 5 = 3√125; vì 125 > 123 ⇒ 3√125 > 3√123.Vậy 5 > 3√123
b) Ta có:
53\(\sqrt{ }\)6 = 3\(\sqrt{ }\)53.6 = 3\(\sqrt{ }\)125.6 = 3\(\sqrt{ }\)750
63\(\sqrt{ }\)5 = 3\(\sqrt{ }\)63.5 = 3\(\sqrt{ }\)216.5 = 3\(\sqrt{ }\)1080
Vì 750 < 1080 \(\Rightarrow\)3\(\sqrt{ }\)750 < 3\(\sqrt{ }\)1080 . Vậy 53\(\sqrt{ }\)6 < 63\(\sqrt{ }\)5.
a) \(\sqrt[3]{123}\) và \(5\)
Ta có : \(5^3=125\)
\(\left(\sqrt[3]{123}\right)^3=123\)
Vì \(125>123\)
\(\implies\) \(\sqrt[3]{125}>\sqrt[3]{123}\)
\(\iff\) \(5>\sqrt[3]{123}\)
Vậy \(5>\sqrt[3]{123}\)
b) \(5\sqrt[3]{6}\) và \(6\sqrt[3]{5}\)
Ta có : \(\left(5\sqrt[3]{6}\right)^3=5^3.\left(\sqrt[3]{6}\right)^3=125.6=750\)
\(\left(6\sqrt[3]{5}\right)=6^3.\left(\sqrt[3]{5}\right)^3=216.5=1080\)
Vì \(750< 1080\)
\(\implies\)\(\sqrt[3]{750}< \sqrt[3]{1080}\)
\(\iff\) \(5\sqrt[3]{6}< 6\sqrt[3]{5}\)
Vậy \(5\sqrt[3]{6}< 6\sqrt[3]{5}\)