Bài 3:
\(a,\dfrac{x-1}{10}+\dfrac{x-1}{11}=\dfrac{x-1}{12}+\dfrac{x-1}{13}\)
\(\Rightarrow\dfrac{x-1}{10}+\dfrac{x-1}{11}-\dfrac{x-1}{12}-\dfrac{x-1}{13}=0\)
\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)=0\)
Mà \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\ne0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
Vậy x = 1
b, \(\dfrac{x-2000}{10}+\dfrac{x-1999}{9}=\dfrac{x-1998}{8}+\dfrac{x-1997}{7}\)
\(\Rightarrow\dfrac{x-2000}{10}+1+\dfrac{x-1999}{9}+1=\dfrac{x-1998}{8}+\dfrac{x-1997}{7}+1\)
\(\Rightarrow\dfrac{x-1990}{10}+\dfrac{x-1990}{9}-\dfrac{x-1990}{8}-\dfrac{x-1990}{7}=0\)
\(\Rightarrow\left(x-1990\right)\left(\dfrac{1}{10}+\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{7}\right)=0\)
Mà \(\dfrac{1}{10}+\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{7}\ne0\)
\(\Rightarrow x-1990=0\Rightarrow x=1990\)