\(5^{40}=\left(5^4\right)^{10}=625^{10}>620^{10}\)
\(\left\{{}\begin{matrix}5^{36}=\left(5^3\right)^{12}=125^{12}\\11^{24}=\left(11^2\right)^{12}=121^{12}\end{matrix}\right.\) \(\Rightarrow5^{36}>11^{24}\)
\(2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1< 2016^2\)
