A=\(\dfrac{5.11.13.\left(1-2\right)}{22.26.\left(1-2\right)}=\dfrac{5.11.13}{2.2.11.13}=\dfrac{5}{4}\)
B=\(\dfrac{138.\left(138-5\right)}{137\left(137-4\right)}=\dfrac{138.133}{137.133}\dfrac{138}{137}\)
A=\(\dfrac{5.11.13.\left(1-2\right)}{22.26.\left(1-2\right)}=\dfrac{5.11.13}{2.2.11.13}=\dfrac{5}{4}\)
B=\(\dfrac{138.\left(138-5\right)}{137\left(137-4\right)}=\dfrac{138.133}{137.133}\dfrac{138}{137}\)
\(a,\left(\dfrac{4}{9}+\dfrac{1}{3}\right)^2\)
\(b,\left(\dfrac{1}{2}-\dfrac{3}{5}\right)^3\)
c,\(\left(\dfrac{-10}{3}\right)^5.\left(\dfrac{-6}{4}\right)^4\)
\(\left(\dfrac{3}{4}\right)^3:\left(\dfrac{3}{4}\right)^2:\left(\dfrac{-3}{2}\right)^3\)
1:Tính
a) \(\left(\dfrac{1}{7}.x-\dfrac{2}{7}\right).\left(\dfrac{-1}{5}.x-\dfrac{2}{5}\right)=0\)
b) \(\dfrac{1}{6}.x+\dfrac{1}{10}.x-\dfrac{4}{5}.x+1=0\)
2:So sánh:
a) A=\(\left(\dfrac{-46}{51}.0,32.\dfrac{17}{20}\right):\dfrac{64}{75}\)
B=\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{8}.\dfrac{10}{11}\)
b) A=\(\dfrac{-1}{3}+\dfrac{0,2-0,375+\dfrac{5}{11}}{-0,3+\dfrac{9}{16}-\dfrac{15}{22}}\)
B=\(\dfrac{-43}{51}.\dfrac{19}{80}\)
\(a.19\dfrac{5}{8}:\dfrac{7}{12}-15\dfrac{1}{4}:\dfrac{7}{12} b.\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}:\dfrac{1}{5}+\dfrac{3}{5}.\dfrac{1}{3}\)
c.\(\left(3\dfrac{1}{3}+2,5\right):\left(3\dfrac{1}{6}-\left(4\dfrac{1}{5}\right)\right)-\dfrac{11}{31}\)
1.Tính giái trị biểu thức
A) TÌM X, BIẾT:
\(\left(\dfrac{1}{1.101}+\dfrac{1}{2.102}+...+\dfrac{1}{10.110}\right).x=\dfrac{1}{1.11}+\dfrac{1}{2.12}+...+\dfrac{1}{100.110}\)
B) CHỨNG TỎ RẰNG:
a/ \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)
b/ \(S=\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{80}>\dfrac{7}{12}\)
c/ \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}< 1\)
d/ \(\dfrac{49}{100}< S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}< 1\)
C)
a/ Tìm giá trị lớn nhất của các biểu thức sau, đồng thời tìm x để các biểu thức này đạt giá trị lớn nhất:
\(A=2018-\left|10-x\right|\)
\(B=1999-\left(x+2\right)^2\)
b) Tìm giá trị nhỏ nhất của các biểu thức sau, đồng thời tìm x để các biểu thức này đạt giá trị nhỏ nhất:
\(A=\left(2x-8\right)^2+3\)
\(B=\left|x^2-25\right|-2017\)
Tìm x:
a,\(\left(x+\dfrac{1}{2}\right).\left(\dfrac{2}{3}-2.x\right)=0\)
b,\(\left(x+\dfrac{1}{5}\right)m\text{ũ}2+\dfrac{17}{25}=\dfrac{26}{25}\)
c,\(\dfrac{x}{3}+\dfrac{x}{7}=\dfrac{1}{7}+\dfrac{3}{14}\)
Bài 1 : Tìm các số nguyên x , biết :
a) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{13}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
b) \(\left(\dfrac{31}{20}-\dfrac{26}{45}\right).-\dfrac{36}{35}< x< \left(\dfrac{51}{56}+\dfrac{8}{21}+\dfrac{1}{3}\right).\dfrac{8}{13}\)
Bài 2 :
C = \(\dfrac{-1}{3}.\dfrac{141}{17}-\dfrac{39}{9}.\dfrac{-1}{7}\)
a) tìm n thuộc Z để phân số sau đây là số nguyên\(\dfrac{3}{n-2}\)
b)tìm số y nguyên dương biết:\(\dfrac{3}{y}< \dfrac{y}{7}< \dfrac{4}{y}\)
c)\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+.....+\dfrac{1}{29.30}\)
d)\(\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{5}\right).\left(1-\dfrac{1}{6}\right)......\left(1-\dfrac{1}{29}\right).\left(1-\dfrac{1}{30}\right)\)
So sánh : \(A=\dfrac{8^{2021}+2}{8^{2022}+2}\) với \(B=\dfrac{8^{2023}+2}{8^{2024}+2}\)
Giúp với
1. Chứng minh rằng với \(\forall N\ne0̸\) ta đều có :
a, \(\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{\left(3n-1\right)\cdot\left(3n+1\right)}=\dfrac{n}{6n+4}\).
2. Tìm GTLN hoặc GTNN của biểu thức \(A=\dfrac{\left|2-x\right|-3}{\left|2-x\right|+11}\).