a) ta có: \(32^{10}\)=\(\left(2^5\right)^{10}\)= \(2^{50}\)
\(8^{13}\)= \(\left(2^3\right)^{13}\)= \(2^{39}\)
=> \(2^{50}>2^{39}\)=>\(32^{10}>8^{13}\)
b) ta có: \(9^5=\left(3^2\right)^5=3^{10}\)
\(32^2=\left(2^5\right)^2=2^{10}\)
=> \(3^{10}< 2^{10}\)=> \(9^5< 32^2\)
c, ta có \(16^{19}=\left(2^4\right)^{19}=2^{76}\)
\(8^{25}\)\(=\left(2^3\right)^{25}=2^{75}\)
=> \(2^{76}>2^{75}\)=> \(6^{19}>8^{25}\)
d, \(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
=> \(3^{33}>3^{32}\)=>