a) \(21^{15}=3^{15}\cdot7^{15}\)
\(27^5\cdot49^8=\left(3^3\right)^5\cdot\left(7^2\right)^8=3^{15}\cdot7^{16}\)
vì \(7^{15}< 7^{16}\)
Nên \(3^{15}\cdot7^{15}< 3^{15}\cdot7^{16}\)
Vậy \(21^5< 27^5\cdot49^8\)
b) \(100^{45}-100^{44}=100\cdot100^{44}-100\cdot100^{43}\)
\(=100\left(100^{44}-100^{43}\right)\)
Do đó:\(100\left(100^{44}-100^{43}\right)>100^{44}-100^{43}\)
Vậy \(100^{45}-100^{44}>100^{44}-100^{43}\)