Giải:
Để A\(\in\)Z thì \(8.n+193⋮4.n+3\)
Ta có:
\(8.n+193⋮4.n+3\)
\(\Rightarrow\left(8.n+6\right)+187⋮4.n+3\)
\(\Rightarrow4.\left(n+3\right)+187⋮4n+3\)
\(\Rightarrow187⋮4n+3\)
\(\Rightarrow4n+3\in\left\{\pm1;\pm187\right\}\)
+) \(4n+3=1\Rightarrow n=\frac{-1}{2}\)
+) \(4n+3=-1\Rightarrow n=-1\)
+) \(4n+3=187\Rightarrow n=46\)
+) \(4n+3=-187\Rightarrow n=\frac{-85}{2}\)
Vậy các giá trị n theo giá trị tăng dần là:
\(S\in\left\{\frac{-1}{2};-1;\frac{-85}{2};46\right\}\)