Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hàn Nguyệt Nhất Tiếu

rút gọn và tính giá trị biểu thức:

P=\(\frac{a^3-a-2b-\frac{b^2}{a}}{(\frac{1}{\sqrt{a}}-\sqrt{\frac{1}{a}+\frac{b}{a^2}})(\sqrt{a}+\sqrt{a+b})}\div(\frac{a^3+a^2+ab+a^2b}{a^2-b^2}+\frac{b}{a-b})\)

với a=23 và b=22

Nguyễn Ngọc Lộc
5 tháng 4 2020 lúc 15:34

Ta có : \(P=\frac{a^3-a-2b-\frac{b^2}{a}}{\left(\frac{1}{\sqrt{a}}-\sqrt{\frac{1}{a}+\frac{b}{a^2}}\right)\left(\sqrt{a}+\sqrt{a+b}\right)}:\left(\frac{a^3+a^2+ab+a^2b}{a^2-b^2}+\frac{b}{a-b}\right)\)

=> \(P=\frac{\frac{a^4}{a}-\frac{a^2}{a}-\frac{2ab}{a}-\frac{b^2}{a}}{\left(\frac{1}{\sqrt{a}}-\sqrt{\frac{1}{a}+\frac{b}{a^2}}\right)\left(\sqrt{a}+\sqrt{a+b}\right)}:\left(\frac{a^2\left(a+1\right)+ab\left(a+1\right)}{\left(a-b\right)\left(a+b\right)}+\frac{b}{a-b}\right)\)

=> \(P=\frac{\frac{a^4-a^2-2ab-b^2}{a}}{\frac{\sqrt{a}}{\sqrt{a}}-\sqrt{a\left(\frac{1}{a}+\frac{b}{a^2}\right)}+\sqrt{\frac{a+b}{a}}-\sqrt{\left(a+b\right)\left(\frac{1}{a}+\frac{b}{a^2}\right)}}:\left(\frac{a\left(a+b\right)\left(a+1\right)}{\left(a-b\right)\left(a+b\right)}+\frac{b}{a-b}\right)\)

=> \(P=\frac{\frac{a^4-\left(a^2+2ab+b^2\right)}{a}}{1-\sqrt{\frac{a}{a}+\frac{ab}{a^2}}+\sqrt{\frac{a+b}{a}}-\sqrt{\frac{a}{a}+\frac{b}{a}+\frac{ab}{a^2}+\frac{b^2}{a^2}}}:\left(\frac{a\left(a+1\right)+b}{a-b}\right)\)

=> \(P=\frac{\frac{a^4-\left(a^2+2ab+b^2\right)}{a}}{1-\sqrt{1+\frac{b}{a}}+\sqrt{\frac{a+b}{a}}-\sqrt{1+\frac{2b}{a}+\frac{b^2}{a^2}}}:\left(\frac{a\left(a+1\right)+b}{a-b}\right)\)

=> \(P=\frac{\frac{a^4-\left(a+b\right)^2}{a}\left(a-b\right)}{\left(1-\sqrt{1+\frac{b}{a}}+\sqrt{\frac{a+b}{a}}-\left(\frac{b}{a}+1\right)\right)\left(a\left(a+1\right)+b\right)}\)

=> \(P=\frac{\frac{\left(a^2-a-b\right)\left(a^2+a+b\right)\left(a-b\right)}{a}}{\left(1-\frac{b}{a}-1\right)\left(a\left(a+1\right)+b\right)}\)\(=\frac{\frac{\left(a^2-a-b\right)\left(a^2+a+b\right)\left(a-b\right)}{a}}{\frac{b\left(a^2+a+b\right)}{a}}\)\(=\frac{\left(a^2-a-b\right)\left(a^2+a+b\right)\left(a-b\right)}{b\left(a^2+a+b\right)}\)

=> \(P=\frac{\left(a^2-a-b\right)\left(a-b\right)}{b}\)

- Thay a = 23, b = 22 vào biểu thức trên ta được :

\(P=\frac{\left(23^2-23-22\right)\left(23-22\right)}{22}=22\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Pham Thanh Thuong
Xem chi tiết
bài tập nâng cao
Xem chi tiết
Ichigo Hoshimiya
Xem chi tiết
hỏa quyền ACE
Xem chi tiết
Linh Nhật
Xem chi tiết
Núi non tình yêu thuần k...
Xem chi tiết
Trần Linh Nga
Xem chi tiết
Núi non tình yêu thuần k...
Xem chi tiết
hỏa quyền ACE
Xem chi tiết