Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Rút gọn tổng \(S=C\overset{1}{2019}-2C\overset{2}{2019}+...-2018C\overset{2018}{2019}+2019C\overset{2019}{2019}\) bằng:
A. 2019
B.1
C. -2019
D. 0
Rút gọn tổng: \(S=-C\overset{1}{2019}+1.2C\overset{2}{2019}-2.3C\overset{3}{2019}+...+2017.2018C\overset{2018}{2019}-2018.2019C\overset{2019}{2019}\) bằng:
A. 1
B.. 2019
C. 0
D. -2019
Rút gọn: \(S=C\overset{1}{100}+2^2C\overset{2}{100}+3^2C\overset{3}{100}+...+100^2C\overset{100}{100}\)
Rút gọn tổng: \(S=C\overset{0}{n}+C\overset{1}{n}+2.C\overset{2}{n}+...+nC\overset{n}{n}\) bằng:
A. \(n.2^n+1\)
B. \(2^n+1\)
C. \(n.2^{n-1}+1\)
D. \(n.2^{n+1}\)
Rút gọn tổng: \(S=C\overset{1}{n}+1.2C\overset{2}{n}+2.3C\overset{3}{n}+...+\left(n-1\right)nC\overset{n}{n}\) bằng:
A. \(\left(n-1\right)n.2^{n-2}\)
B. \(n.2^{n-2}\)
C. \(\left(n-1\right)n.2^{n-1}+n\)
D. \(\left(n-1\right)n.2^{n-2}+n\)
Rút gọn tổng: \(S=C\overset{1}{n}+1.2C\overset{2}{n}+2.3C\overset{3}{n}+...+\left(n-1\right)nC\overset{n}{n}\) bằng:
A. \(\left(n-1\right)n.2^{n-2}\)
B. \(n.2^{n-2}\)
C. \(\left(n-1\right)n.2^{n-1}+n\)
D. \(\left(n-1\right)n.2^{n-2}+n\)
Cho hàm số \(y=\dfrac{1}{2x^2+x-1}\). Hỏi đạo hàm cấp 2019 của hàm số bằng biểu thức nào sau đây?
A. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2019}}{\left(2x-1\right)^{2020}}\right)\)
B. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2020}}{\left(2x-1\right)^{2020}}\right)\)
C. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2}{\left(2x-1\right)^{2020}}\right)\)
D. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}+\dfrac{2}{\left(2x-1\right)^{2020}}\right)\)
Cho hàm số \(y=\dfrac{1}{3x^2-x-2}\). Hỏi đạo hàm cấp 2019 của hàm số bằng biểu thức nào sau đây?
A. \(\dfrac{2019!}{5}\left(\dfrac{1}{\left(x-1\right)^{2020}}-\dfrac{3}{\left(3x+2\right)^{2020}}\right)\)
B. \(\dfrac{2019!}{5}\left(\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
C. \(\dfrac{2019!}{5}\left(\dfrac{3}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
D. \(\dfrac{2019!}{5}\left(\dfrac{1}{\left(x-1\right)^{2020}}-\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}\right)\)
Tính giới hạn
\(\overset{Lim}{x\rightarrow\dfrac{\pi}{6}}\dfrac{2\sin x-1}{6x-\pi}\)
Rút gọn biểu thức \(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+\dfrac{3}{x^4}+...+\dfrac{n}{x^{n+1}}\) bằng:
A. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
B. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{2n}\left(x-1\right)^2}\)
C. \(S=\dfrac{x^n-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
D. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)