\(\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}-\sqrt{3}-\sqrt{2}-\sqrt{5}+1\)
= \(\sqrt{2+3+5+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}-\sqrt{3}-\sqrt{2}-\sqrt{5}+1\)
= \(\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{3}-\sqrt{2}-\sqrt{5}+1\)
= \(\sqrt{2}+\sqrt{3}+\sqrt{5}-\sqrt{3}-\sqrt{2}-\sqrt{5}+1\)
= 1