a)\(\frac{3x\left(1-x\right)}{1\left(x-1\right)}=\frac{-3x\left(x-1\right)}{x-1}=-3x\)
a)\(\frac{3x\left(1-x\right)}{1\left(x-1\right)}=\frac{-3x\left(x-1\right)}{x-1}=-3x\)
rút gọn : x^2/(x-y)(x-z)+y^2/(x-y)(x-y^2/(y-z)(x-z)
Câu 1: Cho \(\frac{x}{x^2+x+1}\)=\(\frac{11}{133}\)
Tính A=\(\frac{x^2}{x^4+x^2+1}\)( 2 cách)
Câu 2: Cho x+y+z=4. Tính B=\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Câu 3: Cho G=\(\frac{a^2}{ab+b^2}+\frac{b^2}{ab-a^2}+\frac{-\left(a^2+b^2\right)}{ab}\)
a) Rút gọn G
b) Tính G khi \(\frac{a}{b}=\frac{a+1}{b+5}\)
Rút gọn:
A=\(\dfrac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+2\left(\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{z-x}\right)\)
Bài 1: phân tích đa thức sau thành nhân tử:
a) x2 + 2x2 +x
b) xy + y2 - x- y
c) x^2 - xy +3x-3y
d) x^3 - 4x^2 -xy^2 +4x
e) ( x+1)(x+2)(x+3)(x+4) - 3
Bài 2: Rút gọn biểu thức sau:
P= 2.(x+y)(x-y) - (x-y)^2 + (x+y)^2 -4y^2
Bài 3: Tìm a,b để :
a) ( 6x^4 - 7x^3 + ax^2 + 3x +2 ) chia hết cho ( x^2 -x +b)
b) ( x^4 - 3x^3 - 3x^2 + ax +b ) chia hết cho ( x^2 - 3x +4)
c) (x^4 + x^3 - x^2 +ax + b) chia hết cho ( x^2 + x -2)
Giúp mình với m.n. Mình cảm ơn nhiều ạ
rút gọn
a) \(\frac{1}{x-y}-\frac{3xy}{x^2-y^2}+\frac{x-y}{x^2+x+y^2}\)
b) \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+4x+4}+\frac{1}{x^2+5x+6}\)
c) \(\frac{4.\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\frac{x^2-25}{9x^2.\left(2x+5\right)^2}-\frac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)
Rút gọn phân thức :
1. 10xy2( x + y )/ 15xy ( x + y )3
2. 15x( x + y )3 / 20x2( x + 5 )
3. 15x( x - y ) / 3( y - x )
4. y2 - x2 / x3 - 3x2y + 3xy2 - y3
cho B=\(\frac{x^4-5x^2+4}{x^4-10x^2+9}\)
a) tìm các giá trị của x để B có nghĩa
b)Tìm các giá trị của x để B=0
Rút gọn A=\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) biết x+y+z=0
Cho x,y,z=1 và x+y+z=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính M=\(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}\)
Giúp mk vs mk cảm ơn nhiều!:)
1) Cho
\(A=\frac{4.x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-3.x+2}\)
a) Rút gọn A
b) Tìm \(x\in Z\) để \(A\in Z\)