CHỨNG MINH
a) \(\frac{\left(\sqrt{a}+1\right)^2-4\sqrt{a}}{\sqrt{a}-1}+\frac{a+\sqrt{a}}{\sqrt{a}}=2\sqrt{a}\) \(\left(a>0;a\ne1\right)\)
b) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\) \(\left(x\ge0;y\ge0\right)\)
c) \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\frac{a-b}{\sqrt{a}-\sqrt{b}}=1\) \(\left(a>0;b>0;a\ne b\right)\)
d) \(\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\right]:\sqrt{b}=2\) \(\left(a>0;b>0\right)\)
Giúp mình với, cảm ơn mn <3
Rút gọn các biểu thức :
a) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}};\left(x\ge0\right)\)
b) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}};\left(x\ne1;y\ne1;y\ge0\right)\)
Rut gon
a)\(\frac{\left(\sqrt{x}+1\right).\left(x-\sqrt{xy}\right).\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right).\left(\sqrt{x^3}+x\right)}\)
b) \(\frac{\left(2-\sqrt{x}\right)^2-\left(\sqrt{x}+3\right)}{1+2.\sqrt{x}}\)
Rut gon
a)\(\frac{\left(\sqrt{x}+1\right).\left(x-\sqrt{xy}\right).\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right).\left(\sqrt{x^3}+x\right)}\)
b) \(\frac{\left(2-\sqrt{x}\right)^2-\left(\sqrt{x}+3\right)}{1+2.\sqrt{x}}\)
B4: Rút gọn biểu thức:
a, \(\dfrac{x^2}{y^2}\div\sqrt{\dfrac{x^2}{y^4}}\) với x,y \(\ne\) 0
b, \(\sqrt{\dfrac{27(x-1)^2}{12}}+\dfrac{3}{2}-(x-2)\sqrt{\dfrac{50x^2}{8(x-2)^2}}\) với 1<x<2
Cho x > 0; y > 0 thỏa mãn:
xy+ \(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=\sqrt{2009}\)
Tính:
A= x\(\sqrt{y^2+1}+y\sqrt{x^2+1}\)
Rút gọn các biểu thức:
a) \(\sqrt{\dfrac{x-2\sqrt{x+1}}{x+2\sqrt{x+1}}}\)(x lớn hơn hoặc bằng 0)
b) \(\dfrac{x-1}{\sqrt{y-1}}\)\(\sqrt{\dfrac{y-2\sqrt{y+1}}{\left(x-1\right)^2}}\) (x khác 1, y khác 1 và y lớn hơn hoặc bằng 0)
Rút gọn các biểu thức:
a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\) ( a <0 ; b # 0 )
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) ( x lớn hơn hoặc = 0)
c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\) ( x<3 tại x = 0,5)
d) \(\dfrac{x-1}{\sqrt{y}-1}.\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\) ( x # 1; y >= 0, y #1)
e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\) ( x > -2 tại x = -\(\sqrt{2}\))
Rút gọn biểu thức:
a) \(\sqrt{\dfrac{x-2\sqrt{x}-1}{x+2\sqrt{x}+1}}\left(x\ge0\right)\)
b) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\left(x\ne1,y\ne1\right),y\ge0\)