\(A=\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}+\dfrac{4-x}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}+\dfrac{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-2}=\sqrt{x}+2-\sqrt{x}-2=0\)
Ta có: \(A=\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}+\dfrac{4-x}{\sqrt{x}-2}\)
=\(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\left(4-x\right)\left(\sqrt{x}+2\right)}{x-4}\)
= \(\dfrac{\left(\sqrt{x}+2\right)\left(x-4+4-x\right)}{x-4}=\dfrac{\left(\sqrt{x}+2\right).0}{x-4}=0\)
Vậy A=0