Rút gọn các biểu thức:
a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\) ( a <0 ; b # 0 )
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) ( x lớn hơn hoặc = 0)
c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\) ( x<3 tại x = 0,5)
d) \(\dfrac{x-1}{\sqrt{y}-1}.\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\) ( x # 1; y >= 0, y #1)
e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\) ( x > -2 tại x = -\(\sqrt{2}\))
Rút gọn các biểu thức sau:
A = \(\dfrac{3}{2\left(2x-1\right)}\sqrt{8\left(4x^2-2x+1\right)x^4}\)
B = \(\dfrac{a-b}{b^2}\sqrt{\dfrac{a^2b^4}{a^2-2ab+b^2}}\)
Rút gọn các biểu thức:
C = \(\sqrt{b^2\left(b-1\right)^2};\left(b< 0\right)\)
D = \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3};x< 3\)
\(B=\dfrac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\)rút gọn biểu thức với x>0 ( cho em xin lời giải chi tiết ạ )
Rút gọn các biểu thức :
a) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}};\left(x\ge0\right)\)
b) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}};\left(x\ne1;y\ne1;y\ge0\right)\)
Bài 1: Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên
a/C=\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) ; b/D=\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}\)
Bài 2: Chứng minh
a/\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}=\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\) b/\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
1. Tìm x để bt có nghĩa
A=\(\dfrac{\sqrt{2x+3}}{\sqrt{x-3}}\)
B=\(\sqrt{\dfrac{2x+3}{x-3}}\)
C=\(\sqrt{-\dfrac{5}{x+2}}\)
D=\(\sqrt{-x}+\dfrac{1}{x+3}\)
2. Rút gọn bt
A=\(\sqrt{\dfrac{a+\sqrt{a^2-1}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-1}}{2}};\left(a>1\right)\)
B=\(\sqrt{\dfrac{a+\sqrt{a^2-1}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}};\left(a\ge\sqrt{b};b\ge0\right)\)
C=\(\left(1+\dfrac{a+\sqrt{a}}{a+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}+1}\right);\left(a\ge0,a\ne1\right)\)
D=\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}};\left(x>0\right)\)
Tính giá trị của biểu thức
A=\(\dfrac{1+2x}{1+\sqrt{1+2x}}+\dfrac{1-2x}{1-\sqrt{1-2x}}\) với x=\(\dfrac{\sqrt{3}}{4}\)
B=\(\dfrac{2b\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}\right)\) và a>0,b>0
C=\(\dfrac{2a\sqrt{1+x^2}}{\sqrt{1+x^2}-x}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{1-a}{a}}-\sqrt{\dfrac{a}{1-a}}\right)\) và 0<a<1
Cho biểu thức .
Q =\(\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right)\)
a ) Tìm x để Q có nghĩa.
b) Rút gon Q .