\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}
\)
\(=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{4-2\sqrt{3}}}\)
=\(\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{1+2\sqrt{3}+3}}+\frac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{1-2\sqrt{3}+1}}\)
=