\(a,\sqrt{4x^4}+6x^2=2x^2+6x^2=8x^2\)
\(b,\sqrt{25a^4}-2a^2=5a^2-2a^2=3a^2\)
\(c,\sqrt{36a^4}+8a=6a^2+8a\)
\(d,\sqrt{\left(x-3\right)^4}-x^2+3x-1=\left(x-3\right)^2-x^2+3x-1=x^2-6x+9-x^2+3x-1=-3x+8\)
\(a,\sqrt{4x^4}+6x^2=2x^2+6x^2=8x^2\)
\(b,\sqrt{25a^4}-2a^2=5a^2-2a^2=3a^2\)
\(c,\sqrt{36a^4}+8a=6a^2+8a\)
\(d,\sqrt{\left(x-3\right)^4}-x^2+3x-1=\left(x-3\right)^2-x^2+3x-1=x^2-6x+9-x^2+3x-1=-3x+8\)
rút gọn các biểu thức sau
a)x-2y-\(\sqrt{x^2-4xy+4y^2}\) d)\(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\)
B)\(x^2+\sqrt{x^4-8x^2+16}\) e)\(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)
C)\(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)
Rút gọn biểu thức:
\(A=\sqrt{\left(2-\sqrt{7}\right)^2}+\left(\sqrt{7}-1\right)^2\)
\(B=3\sqrt{\left(1,5\right)^2}-4\sqrt{\left(3-\sqrt{2}\right)^2}\)
1. \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\)
Rút gọn biểu thức A
cho \(\dfrac{\sqrt{\left(x-4\right)^3}}{\sqrt{x-4}}\) với x > 4 . Rút gọn biểu thức
Rút gọn các biểu thức sau :
a) \(\sqrt{\left(4+\sqrt{2}\right)^2}\)
b) \(\sqrt{\left(3-\sqrt{3}\right)^2}\)
c) \(\sqrt{\left(4-\sqrt{17}\right)^2}\)
d) \(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
Rút gọn biểu thức sau:
\(\dfrac{\left(4+\sqrt{7}\right).\sqrt{4-\sqrt{7}}}{\sqrt{4+\sqrt{7}}}\)
Câu1: Rút gọn
\(a,x+\sqrt{\left(x+2\right)^2}\cdot\left(x-2\right)\\ b,\sqrt{m^2-6m+9-2m}\left(x>3\right)\\ c,1+\sqrt{\frac{\left(x-1\right)^2}{x-1}}\\ d,\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
Câu 2: So sánh
\(a,3và\sqrt{5}\\ \\ \\ b,2\sqrt{2}và3\sqrt{2}\\ \\ \\ c,-4\sqrt{5}và-6\sqrt{6}\\ \\ \\ d,2\sqrt{3}-5và\sqrt{3}-4\\ \\ \\e,A=\sqrt{2006}-\sqrt{2005}và\\ B=\sqrt{2005}-\sqrt{2004}\)
Câu 3: Rút gọn
\(a,\sqrt{16-2\sqrt{55}}\\ \\ \\ \\ \\ \\ \\ \\ \\ b,\sqrt{14-6\sqrt{5}}\\ \\ \\ \\ \\ \\ \\ \\ \\ c,\sqrt{36+12\sqrt{5}}\\ \\ \\ \\ \\ \\ \\ \\ \\ d,\sqrt{29+12\sqrt{5}}\)
Câu4: Tìm đkxđ
\(a,\sqrt{x^2-9}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ b,\sqrt{x^2-3x+2}\)
\(c,\frac{\sqrt{x+3}}{\sqrt{5-x}}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ d,\sqrt{\frac{x+3}{5-x}}\)
Câu 1 tìm đkxđ của các căn thức bậc hai sau
a)\(\sqrt{1-x}\)
b)\(\sqrt{\dfrac{2}{x}}\)
c)\(\sqrt{\dfrac{4}{x+1}}\)
d)\(\sqrt{x^2+2}\)
Câu 2 rút gọn
a)\(\sqrt{\left(-\sqrt{2-1}\right)^2}\)
b)\(\sqrt{\left(4+\sqrt{2}\right)^2}\)
Bài 1: Tìm điều kiện để các phân thức sau có nghĩa
a)\(\frac{x-1}{x+1}b)\frac{2x+1}{-3x+5}c)\frac{3x-1}{x^2-4}d)\frac{x-1}{x^2+4}e)\frac{x-1}{\left(x-2\right)\left(x+3\right)}g)\frac{x-1}{x+2}:\frac{x}{x+1}\)
Bài 2 :Tìm điều kiện để các căn thức sau có nghĩa:\(1)\sqrt{3x}|2)\sqrt{-x}|3)\sqrt{3x+2}|4)\sqrt{5-2x}|5)\sqrt{x^2}|6)\sqrt{-4x^2}|7)\sqrt{x-3}+\sqrt{2x+2}|8)\sqrt{\frac{-3}{x+2}}|9)\frac{3}{2x-4}\)