a/ \(\sqrt{21+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
= \(\sqrt{16+2.4.\sqrt{5}+5}+\sqrt{5-2.2\sqrt{5}+4}\)
= \(\sqrt{\left(4+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
= \(4+\sqrt{5}+\sqrt{5}-2=2+2\sqrt{5}\)
b/ \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{10}+\sqrt{15}}{2\left(\sqrt{2}+\sqrt{3}\right)}\) = \(\dfrac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{2\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}\)
= \(\dfrac{\sqrt{20}-\sqrt{30}+\sqrt{30}-\sqrt{45}}{2\left(2-3\right)}\) = \(\dfrac{\sqrt{20}-\sqrt{45}}{-2}\) = \(\dfrac{2\sqrt{5}-3\sqrt{5}}{-2}\)
= \(\dfrac{-\sqrt{5}}{-2}=\dfrac{\sqrt{5}}{2}\)