Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Nhã Hân

Rút gọn:

\(A=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+[\sqrt{a}-\dfrac{1}{\sqrt{a}}][\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}]\)

tran nguyen bao quan
4 tháng 9 2018 lúc 14:30

ĐKXĐ: x≠0,x≠1,x>0

\(A=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\dfrac{a-1}{\sqrt{a}}\right)\left(\dfrac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\left(\dfrac{\left(a-1\right)\left(a+2\sqrt{a}+1+a-2\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)}\right)=\dfrac{2\sqrt{a}}{\sqrt{a}}+\dfrac{2a+2}{\sqrt{a}}=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)


Các câu hỏi tương tự
Phương Nguyễn
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Vinh Duong Van
Xem chi tiết
Lê Ngọc Huyền
Xem chi tiết
hello hello
Xem chi tiết
vi thanh tùng
Xem chi tiết
Phương Nguyễn
Xem chi tiết
hello hello
Xem chi tiết
Ngân Trần
Xem chi tiết
Ngân Trần
Xem chi tiết