\(\dfrac{x+1}{2x^2-x^4}=\dfrac{x+1}{x^2\left(2-x^2\right)}=\dfrac{-\left(x+1\right)\left(x^4+2x^2+4\right)}{x^2\left(x^2-2\right)\left(x^4+2x^2+4\right)}\)
\(\dfrac{x}{x^4+2x^2+4}=\dfrac{x}{x^4+2x^2+4}=\dfrac{x^3\left(x^2-2\right)}{x^2\left(x^2-2\right)\left(x^4+2x^2+4\right)}\)
\(\dfrac{2x-1}{x^7-8x}=\dfrac{2x-1}{x\left(x^6-8\right)}=\dfrac{2x-1}{x\left(x^2-2\right)\left(x^4+2x^2+4\right)}=\dfrac{2x^2-x}{x^2\left(x^2-2\right)\left(x^4+2x^2+4\right)}\)