a)
\(\dfrac{1}{x+2}=\dfrac{1}{2+x}\)
\(\dfrac{8}{2x-x^2}=\dfrac{-8}{-x\left(2+x\right)}=\dfrac{8}{x\left(2+x\right)}\)
MTC: \(x\left(2+x\right)\)
\(\dfrac{1}{x+2}=\dfrac{1}{2+x}=\dfrac{x}{x\left(2+x\right)}\)
\(\dfrac{8}{2x-x^2}=\dfrac{-8}{-x\left(2+x\right)}=\dfrac{8}{x\left(2+x\right)}\)
b)
\(x^2+1=\dfrac{x^2+1}{1}\)
\(\dfrac{x^2}{x^2-1}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)
MTC: \(\left(x-1\right)\left(x+1\right)\)
\(x^2+1=\dfrac{x^2+1}{1}=\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\dfrac{x^2}{x^2-1}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)