ĐKXĐ:
\(\left\{{}\begin{matrix}a\ge0\\\sqrt{a}\ne3\\a\ne9\\\frac{2\sqrt{a}-2}{\sqrt{a}-3}-1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\a\ne9\\\sqrt{a}+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\a\ne9\end{matrix}\right.\)
a,
\(Q=\left(\frac{2\sqrt{a}}{\sqrt{a}+3}-\frac{\sqrt{a}}{\sqrt{a}-3}-\frac{3a+3}{a-9}\right):\left(\frac{2\sqrt{a}-2}{\sqrt{a}-3}-1\right)\)
\(=\frac{2\sqrt{a}\left(\sqrt{a}-3\right)-\sqrt{a}\left(\sqrt{a}+3\right)-3a-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}:\frac{2\sqrt{a}-2-\sqrt{a}+3}{\sqrt{a}-3}\)
\(=\frac{2a-6\sqrt{a}-a-3\sqrt{a}-3a-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\cdot\frac{\sqrt{a}-3}{\sqrt{a}+1}\)
\(=\frac{-2a-9\sqrt{a}-3}{\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)}=\frac{-2a-9\sqrt{a}-3}{a+4\sqrt{a}+3}\)
b,
\(Q< -\frac{1}{2}\Leftrightarrow\frac{-2a-9\sqrt{a}-3}{a+4\sqrt{a}+3}< -\frac{1}{2}\)
\(\Leftrightarrow\frac{2a+9\sqrt{a}+3}{a+4\sqrt{a}+3}>\frac{1}{2}\)
\(\Leftrightarrow4a+18\sqrt{a}+6>a+4\sqrt{a}+3\)
\(\Leftrightarrow3a+14\sqrt{a}+3>0\)
Vậy với mọi thỏa ĐKXĐ thì \(Q< -\frac{1}{2}\)
c,
\(Q=\frac{-2a-9\sqrt{a}-3}{a+4\sqrt{a}+3}=-\frac{\left(a+4\sqrt{a}+3\right)+a+5\sqrt{a}}{a+4\sqrt{a}+3}=-1-\frac{a+5\sqrt{a}}{a+4\sqrt{a}+3}\)
mình nghx đề có vấn đề, số xấu quá