a) \(x^3-3x^2+1-3x=\left(x^3+1\right)-\left(3x^2+3x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
b) \(3x^2-7x-10=3x^2+3x-10x-10\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-10\right)\)
a) \(x^3-3x^2-3x+1=\left(x^3+1\right)-\left(3x^2+3x\right)\)
= \(\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2-x+1-3x\right)\)
= \(\left(x+1\right)\left(x^2-4x+1\right)\)
b) \(3x^2-7x-10=\left(3x^2+3x\right)-\left(10x+10\right)\)
= \(3x\left(x+1\right)-10\left(x+1\right)\)
= \(\left(x+1\right)\left(3x-10\right)\)