\(x^3-7x+6\)
\(=x^3-x^2-2x^2+2x+3x^2-3x-6x+6\)
\(=x^2\left(x-1\right)-2x\left(x-1\right)+3x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+3x-6\right)\)
\(=\left(x-1\right)\left[\left(x^2-2x\right)+\left(3x-6\right)\right]\)
\(=\left(x-1\right)\left[\left(x-2\right)\left(x+3\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x+3\right)\)
Ta có:x3-7x+6
=x3-x-6x+6
=x(x2-1)-6(x-1)
=x(x-1)(x+1)-6(x-1)
=(x2+x-6)(x-1)
x3-7x+6
=x3-x-6x+6
=(x3-x)-(6x-6)
=x.(x2-1)-6.(x-1)
=x(x-1).(x+1)-6(x-1)
=(x-1)[x(x+1)-6]
=(x-1).(x2+x-6)
=(x-1).(x2+2x)-(3x+6)
=(x-1).(x+2)-3(x+2)
=(x-1)(x+2)(x-3)