a, Đặt \(x^2+4x+8=a,x=b\)
\(\left(a\right)\)\(\Leftrightarrow a^2+3ab+2b^2\)\(=\)\(\left(a+b\right)\left(a+2b\right)\)\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
b, Đặt \(x^2+x+1=t\)
\(\left(b\right)=t.\left(t+1\right)-12=t^2+t-12\)\(=\left(t-3\right)\left(t+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
c, Tương tự câu b
d,
\(\left(d\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+10=t\)
\(\left(d\right)=t\left(t+2\right)-24=t^2+2t-24=\left(t-4\right)\left(t+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)