Bài giải:
a) x2 – xy + x – y = (x2 – xy) + (x - y)
= x(x - y) + (x -y)
= (x - y)(x + 1)
b) xz + yz – 5(x + y) = z(x + y) - 5(x + y)
= (x + y)(z - 5)
c) 3x2 – 3xy – 5x + 5y = (3x2 – 3xy) - (5x - 5y)
= 3x(x - y) -5(x - y) = (x - y)(3x - 5).
\(a) x^2 - xy+x-y\) \(= (x^2 - xy) + ( x- y) \)
\(=x(x-y) + (x-y)\)
\(= (x-y) (x+1)\)
\(b) xz + yz - 5(x+y)\) \(= (xz + yz) - 5(x+y)\)
\(= z(x+y) - 5(x+y)\)
\(= (x+y) (z-5)\)
\(c) 3x^2 - 3xy - 5x +5y = (3x^2-3xy) - (5x-5y)\)
\(= 3x(x-y) - 5(x-y)\)
\(= (x-y)(3x-5)\)
a) x2 - xy + x - y = x (x - y) + (x - y)
=(x - y) (x + 1)
b) xz + yz - 5 (x + y) = z (x + y) - 5 (x + y)
=(x + y) (z - 5)
c) 3x2 - 3xy - 5x + 5y = 3x (x - y) - 5 (x - y)
= (x - y) (3x - 5)
a, \(x^2-xy+x-y=\left(x^2+x\right)-\left(\text{ x }y-y\right)\)
=\(\left(\text{ x }^2+\text{ x }\right)-\left(\text{ x }y+y\right)\)
=\(\left(\text{x}+1\right)-y\left(\text{x}+1\right)\)
=\(\left(x-y\right)\left(\text{x}+1\right)\)
b,
=xz + yz - 5x - 5 y
=\(\left(\text{x }z-5\text{x }\right)+\left(yz-5y\right)\)
=x\(\left(z-5\right)+y\left(z-5\right)\)
=\(\left(\text{x}+y\right)\left(z-5\right)\)
c, \(3\text{x}^2-3\text{x}y-5\text{x}+5y=\left(3\text{x}^2-3\text{x}y\right)-\left(5\text{x}+5y\right)\)
=\(\left(3\text{x}^2-3\text{x}y\right)-\left(5\text{x}-5y\right)\)
=3x\(\left(\text{x}-y\right)-5\left(\text{x}-y\right)\)
=\(\left(3\text{x}-5\right)\left(\text{x}-y\right)\)