\(\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
a.Rút gọn
b.GTNN
\(A=\left(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x-3}}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x-2}}{\sqrt{x-3}}-1\right)\)
a, Tìm điều kiện xác định
b, Rút gọn A
c, Tìm x để A ≤ \(\frac{-1}{3}\)
d, Tìm giá trị nhỏ nhất của A
Cho biểu thức: A=\(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x},B=\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
a,Tính giá trị của B tại x=36
b,Rút gọn A
Câu 1 :A= \(\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{x+2}\right)\)
a, rút gọn A
b, Tìm X sao cho A<2
Câu 2 \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, rút gọn A \(\left(với\right)x\ge0,x\ne1\)
b, chúng minh rằng A\(\le\)\(\frac{2}{3}\)
Câu 3 \(\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\left(vớix>0\right)\)
a, Rút gọn P
b, tìm giá trị của x để P=3
Cho biểu thức \(P=\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
a) Rút gọn P
b) Tính giá trị của P với \(x=3-2\sqrt{2}\)
Rút gọn biểu thức:
a) \(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\left(x\ge0,x\ne1\right)\)
b) \(B=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x-3}\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\left(x>0,x\ne9\right)\)
c) \(C=\frac{2\sqrt{x}-9}{x-5+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,x\ne9\right)\)
Cho biểu thức: B = \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{8\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}-x-3}{x-1}-\frac{1}{\sqrt{x-1}}\right)\)
a, Rút gọn B
b, Tính giá trị của B khi x = \(3+2\sqrt{2}\)
Bài 1 : Cho P = \(\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
a. Rút gọn P
b. So sánh P và 1
c. Chứng minh P > \(\sqrt{P}\)
d. Tìm Min P
e. Tìm x nguyên để P nguyên
Bài 2 : Cho P = \(\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x\sqrt{x}-x+\sqrt{x}+1}\right):\left(1-\frac{\sqrt{x}}{x+1}\right)\)
a. Tính P khi x = 6 - \(2\sqrt{5}\)
b. Chứng minh P > 0
c. Tìm x để P = 1
Bài 3 : Cho P = \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a. Chứng tỏ P ≤ \(\frac{2}{3}\)
b. Tìm x để P > 0
Rút gọn
\(A=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(B=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)