Lời giải:
ĐK: \(x>0; x\neq 4\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4x}{2\sqrt{x}-x}\right): \frac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(=\left(\frac{x}{\sqrt{x}(\sqrt{x}-2)}-\frac{4x}{\sqrt{x}(\sqrt{x}-2)}\right).\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
\(=\frac{x-4x}{\sqrt{x}(\sqrt{x}-2)}.\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
\(=\frac{-3x}{\sqrt{x}(\sqrt{x}+3)}=\frac{-3\sqrt{x}}{\sqrt{x}+3}\)