Cho biểu thức D = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
với \(x\ne9,x\ge0\)
a) Rút gọn D
b)Tìm x để \(D< \dfrac{-1}{4}\)
rút gọn
C=\(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right)\div\dfrac{\sqrt{x}}{x-4}vớix>0,x\ne4\)
D=\(\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x+1}}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}vớix>1,x\ne4,x\ne9\)
lm nhanhgiups mk nhé!Mk đang cần gấp!
Rút gọn
A=\(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right)\div\left(\dfrac{\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
B=\(\left(\dfrac{1}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right)\div\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)
Rút gọn:
A=\(\left(\dfrac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\dfrac{x}{x-2\sqrt{x}}\right)\div\dfrac{1-\sqrt{x}}{2-\sqrt{x}}vớix>0,x\ne1\)
B=\(\left(\dfrac{x}{3+\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right)\div\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Lm nhanh giúp mk nhé!
\(B=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+9\sqrt{x}}{9-x};\left(x\ge0;x\ne9;x\ne16\right)\)
\(B=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1};\left(x>0;x\ne1\right)\)
A= \(\left[\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\right)+\dfrac{\sqrt{x}}{\sqrt{x}+3}+3\left(\dfrac{\sqrt{x}}{x-9}\right)\right]:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{1}{1}\right)\)với x>= 0 , x #9
Rút gọn biểu thức
a,\(\frac{1}{\left(2\sqrt{x}-2\right)}-\frac{1}{\left(2\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(1-x\right)}\)
b, \(\left(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\right):\left(\dfrac{x+y+2xy}{1-xy}+1\right)\)
c, \(\dfrac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7}-2}-\dfrac{\sqrt{7}-5}{2}=4+\sqrt{11}-3\sqrt{7}\)
\(\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y+x}{y-x}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
Tìm x, bt :
a, \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)>0\)
b, \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{3}{x-\sqrt{x}+1}\right)>1\)