P = cot2x.(cos2x - 1) +2+cos2x
= \(\left(\frac{cosx}{sinx}\right)^2\)(-sin2x) +2+cos2x
= -cos2x + 2 + cos2x
=2 (Đáp án A)
P = cot2x.(cos2x - 1) +2+cos2x
= \(\left(\frac{cosx}{sinx}\right)^2\)(-sin2x) +2+cos2x
= -cos2x + 2 + cos2x
=2 (Đáp án A)
Câu 1 : Dùng công thức cộng chứng minh các đẳng thức sau :
a/ sin(\(\frac{\pi}{4}+x\)) -sin \(\left(\frac{\pi}{4}-x\right)\)=\(\sqrt{2}sinx\)
b/ cos(x+y) cos(x-y)=cos\(^2\)x - sin\(^2\)y
c/\(\frac{tan^2x-tan^2y}{1-tan^2x.tan^2y}=tan\left(x+y\right)tan\left(x-y\right)\)
d/ cot2x=\(\frac{cot^2x-1}{2cotx}\)
e/ sin15\(^o\) + tan30\(^o\) cos15\(^o\)=\(\frac{\sqrt{6}}{3}\)
f/ \(cos^2x-sin\left(\frac{\pi}{6}+x\right)sin\left(\frac{\pi}{6}-x\right)=\frac{3}{4}\)
h/ \(\frac{tanx+tany}{tan\left(x+ y\right)}-\frac{tanx-tany}{tan\left(x-y\right)}=-2tanx.tany\)
Câu 1: cho sin a = -\(\dfrac{3}{5}\) và \(\pi\) < a< \(\dfrac{3\pi}{2}\) . Tính giá trị sin (a +\(\dfrac{\pi}{3}\))
Câu 2: Trong mặt phẳng Oxy, cho điểm I ( 1; -1) và đường thẳng d: x+y+2=0. Viết phương trình đường tròn tâm I cắt d tại hai điểm phân biệt A, B sao cho AB= 2
giúp mk vs nhé!
a) Cho tan x=3 và \(\frac{\pi}{6}\)∠x∠\(\frac{\pi}{3}\) . Tính giá trị của biểu thức B =\(\frac{\cos^2x+\cot^2x}{\tan x-\cot x}\)
b) Cho cos α=\(\frac{-4}{5}\) và \(\frac{\pi}{2}\)∠α∠\(\pi\) . Tính giá trị của biểu thức A=\(\frac{3\sin2\alpha-\tan2\alpha}{\cos\alpha-\cos2\alpha}\)
c) Cho tan x=-2 và\(\frac{3\pi}{2}\)∠x∠\(2\pi\) . Tính giá trị của biểu thức B=\(\frac{\cos^2x+\sin2x}{\tan2x-\cos2x}\)
Tìm giá trị lớn M và nhỏ nhất m của biểu thưc:
a) \(P=sin^2x+2cos^2x\)
b) \(P=8sin^2x+3cos2x\)
c) \(P=sin^4x-cos^4x\)
d) \(P=sin^6x+cos^6x\)
Gọi M = 1 + sin2x + cos2x thì:
A. M = 2cosx.(sinx - cosx)
B. M = cosx.(sinx + cosx)
C. M = \(\sqrt{2}\)cosx.cos(x - \(\frac{\pi}{4}\))
D. M = \(2\sqrt{2}\)cosx.cos(x - \(\frac{\pi}{4}\))
Biết tan α=3. Tính giá trị các biểu thức sau:
a)\(\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
b)\(\frac{2\sin\alpha+3\cos\alpha}{3\sin\alpha-5\cos\alpha}\)
c)\(\frac{1+2\cos^2\alpha}{\sin^2\alpha-\cos^2\alpha}\)
d)\(\frac{\sin^4\alpha+\cos^4\alpha}{1+\sin^2\alpha}\)
Cho cotx=2 . Tính giá trị của biểu thức B= sin^ 2 x-2 sin x.cos x-1 / 5cos^2 x + sin^2 x - 3
chon sina=\(\dfrac{5}{13}\) với \(\dfrac{\Pi}{2}< a< \Pi\) tính các giá trị lượng giác cosa,sin2a, cos\(a-\dfrac{\Pi}{3}\)
rut gon
\(A=\frac{1-sinx-cos2x}{sin2x-cosx}\)
\(B=\frac{sin2x+sinx}{1+cos2x+cosx}\)
\(C=\frac{tana-cota}{tana+cota}+cos2a\)