a, \(5x^2y\cdot2xy^2=10x^3y^3\)
b, \(\dfrac{3}{4}xy\cdot8x^3y^2=6x^4y^3\)
c, \(1,5xy^2z^3\cdot2x^3y^2z=3x^3y^4z^4\)
a, \(5x^2y\cdot2xy^2=10x^3y^3\)
b, \(\dfrac{3}{4}xy\cdot8x^3y^2=6x^4y^3\)
c, \(1,5xy^2z^3\cdot2x^3y^2z=3x^3y^4z^4\)
Nhân hai đơn thức:
a) \(3{x^2}\) và \(2{x^3}\)
b) \( - xy\) và \(4{z^3}\)
c) \(6x{y^3}\) và \( - 0,5{x^2}\)
Tìm tích của đơn thức với đa thức:
a) \(\left( { - 0,5} \right)x{y^2}\left( {2xy - {x^2} + 4y} \right)\)
b) \(\left( {{x^3}y - \dfrac{1}{2}{x^2} + \dfrac{1}{3}xy} \right)6x{y^3}\)
Thực hiện phép nhân:
a) \(\left( {2x + y} \right)\left( {4{x^2} - 2xy + {y^2}} \right)\);
b) \(\left( {{x^2}{y^2} - 3} \right)\left( {3 + {x^2}{y^2}} \right)\).
Bằng cách tương tự, hãy làm phép nhân \(\left( {5{x^2}y} \right).\left( {3{x^2}y - xy - 4y} \right)\).
Làm tính nhân:
a) \(\left( {{x^2} - xy + 1} \right)\left( {xy + 3} \right)\)
b) \(\left( {{x^2}{y^2} - \dfrac{1}{2}xy + 2} \right)\left( {x - 2y} \right)\)
Chứng minh đẳng thức sau: \(\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right) = \left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\).
Giả sử độ dài hai cạnh của một hình chữ nhật được biểu thị bởi M = x + 3y + 2 và N = x + y. Khi đó, diện tích của hình chữ nhật được biểu thị bởi
MN = (x + 3y + 2)(x + y).
Trong tình huống này, ta phải nhân hai đa thức M và N. Phép nhân đó được thực hiện như thế nào và kết quả có phải là một đa thức hay không?
Hãy nhớ lại quy tắc nhân đơn thức với đa thức trong trường hợp chúng có một biến bằng cách thực hiện phép nhân \(\left( {5{x^2}} \right).\left( {3{x^2} - x - 4} \right)\)
Hãy nhớ lại quy tắc nhân hai đa thức một biến bằng cách thực hiện phép nhân:
\(\left( {2x + 3} \right).\left( {{x^2} - 5x + 4} \right)\)