Gọi độ dài bốn tấm vải lần lượt là a,b,c,d
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\\\dfrac{b}{4}=\dfrac{c}{5}\\\dfrac{c}{6}=\dfrac{d}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\\\dfrac{b}{24}=\dfrac{c}{30}=\dfrac{d}{35}\end{matrix}\right.\Leftrightarrow\dfrac{a}{16}=\dfrac{b}{24}=\dfrac{c}{30}=\dfrac{d}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{16}=\dfrac{b}{24}=\dfrac{c}{30}=\dfrac{d}{35}=\dfrac{a+b+c+d}{16+24+30+35}=\dfrac{210}{105}=2\)
Do đó: a=32; b=48; c=60; d=70