Bài 3: Đường tiệm cận của đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Nếu trong một ngày, một xưởng sản xuất được x kilôgam sản phẩm thì chi phí trung bình (tính bằng nghìn đồng) cho một sản phẩm được cho bởi công thức: \(C\left(x\right)=\dfrac{50x+2000}{x}\).

Tìm các đường tiệm cận của đồ thị hàm số y = C(x).

datcoder
28 tháng 10 lúc 22:54

Tập xác định: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\)

\(\mathop {\lim }\limits_{x \to {0^ + }} C(x) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{50x + 2000}}{x} = \frac{{2000}}{0} =  + \infty \); \(\mathop {\lim }\limits_{x \to {0^ - }} C(x) = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{50x + 2000}}{x} = \frac{{2000}}{0} =  + \infty \)

Vậy tiệm cận đứng của đồ thị hàm số là đường thẳng x = 0

\(\mathop {\lim }\limits_{x \to  + \infty } C(x) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{50x + 2000}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{50 + \frac{{2000}}{x}}}{1} = 50\); \(\mathop {\lim }\limits_{x \to  - \infty } C(x) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{50x + 2000}}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{50 + \frac{{2000}}{x}}}{1} = 50\)

Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng y = 50