Đáp án đúng là A
Vì \(\Delta ABC\backsim\Delta MNP\) theo tỉ số \(k = 3\) nên \(\Delta MNP\backsim\Delta ABC\) theo tỉ số \(\frac{1}{3}\).
Đáp án đúng là A
Vì \(\Delta ABC\backsim\Delta MNP\) theo tỉ số \(k = 3\) nên \(\Delta MNP\backsim\Delta ABC\) theo tỉ số \(\frac{1}{3}\).
Nếu \(\Delta ABC\)có \(MN//AB\) (với \(M \in AC,N \in BC\)) thì
A. \(\Delta CMN\backsim\Delta ABC\).
B. \(\Delta CNM\backsim\Delta CAB\).
C. \(\Delta CNM\backsim\Delta ABC\).
D. \(\Delta MNC\backsim\Delta ABC\).
Cho \(\Delta ABD\backsim\Delta DEF\)với tỉ số đồng dạng \(k = \frac{1}{3}\), biết \(AB = 9cm\). Khi đó, \(DE\) bằng
A. 6 cm.
B. 12 cm.
C. 3 cm.
D. 27 cm.
Cho tam giác \(ABC\)nhọn có hai đường cao \(BE,CF\) cắt nhau tại \(H\). Chứng minh rằng
a) \(\Delta AEB\backsim\Delta AFC\).
b) \(\frac{{HE}}{{HC}} = \frac{{HF}}{{HB}}\).
c) \(\Delta HEF\backsim\Delta HCB\)
Nếu tam giác \(ABC\) và tam giác \(EFG\) có \(\widehat A = \widehat E;\widehat B = \widehat F\) thì
A. \(\Delta ABC\backsim\Delta EGF\).
B. \(\Delta ABC\backsim\Delta EFG\).
C. \(\Delta ACB\backsim\Delta GFE\).
D. \(\Delta CBA\backsim\Delta FGE\).
Cho tam giác \(ABC\) nhọn có hai đường cao \(BM,CN\) cắt nhau tại \(H\).
a) Chứng minh rằng \(\Delta AMN\backsim\Delta ABC\).
b) Phân giác của \(\widehat {BAC}\) cắt \(MN\) và \(BC\) lần lượt tại \(I\) và \(K\). Chứng minh rằng \(\frac{{IM}}{{IN}} = \frac{{KB}}{{KC}}\).
Cho hình thang \(ABCD\left( {AB//CD} \right)\), có hai đường chéo \(AC\) và \(DB\) cắt nhau tại \(O\). Biết \(AB = 8cm,CD = 20cm\). Khi đó \(\Delta AOB\backsim\Delta COD\) với tỉ số đồng dạng là
A.\(k = \frac{2}{3}\).
B. \(k = \frac{3}{2}\).
C. \(k = \frac{2}{5}\).
D. \(k = \frac{5}{2}\).
Cho tam giác \(ABC\) vuông tại \(A\left( {AB < AC} \right)\). Kẻ đường cao \(AH\left( {H \in BC} \right)\).
a) Chứng minh rằng \(\Delta ABH\backsim\Delta CBA\), suy ra \(A{B^2} = BH.BC\).
b) Vẽ \(HE\) vuông góc với \(AB\) tại \(E\), vẽ \(HF\) vuông góc với \(AC\) tại \(F\). Chứng minh rằng \(AE.AB = AF.AC\).
c) Chứng minh rằng \(\Delta AFE\backsim\Delta ABC\).
d) Qua \(A\) vẽ đường thẳng song song với \(BC\) cắt đường thẳng \(HF\) tại \(I\). Vẽ \(IN\) vuông góc với \(BC\) tại \(N\). Chứng minh rằng \(\Delta HNF\backsim\Delta HIC\).
Trong Hình 1, cho biết \(\widehat {ABD} = \widehat {ACD},AC = 9cm,AD = 4cm\).
a) Chứng minh tam giác \(\Delta ABD\backsim\Delta ACB\).
b) Tính độ dài cạnh \(AB\).
Quan sát Hình 6. Vẽ vào tờ giấy tam giác \(DEF\) với \(EF = 4cm,\widehat E = 36^\circ ,\widehat F = 76^\circ \).
a) Chứng minh \(\Delta DEF\backsim\Delta AMC\).
b) Dùng thước đo chiều dài cạnh \(DF\) của \(\Delta DEF\). Tính khoảng cách giữa hia điểm \(A\) và \(C\) ở hai bờ sông trong Hình 6.