a/ \(4A=4.6=24\left(cm\right)\)
\(f=\frac{\omega}{2\pi}=\frac{4\pi}{2\pi}=2\left(Hz\right)\)
\(\varphi_0=\frac{\pi}{6}\left(rad\right)\)
b/ \(v=-\omega A\sin\left(\omega t+\varphi\right)=-4\pi.6.\sin\left(4\pi.\frac{1}{4}+\frac{\pi}{6}\right)=-4.\pi.6.\frac{-1}{2}=12\pi\left(cm/s\right)\)
\(a=-\omega.x=-4\pi.6\cos\left(4\pi.\frac{1}{4}+\frac{\pi}{6}\right)=-4\pi.6.\frac{-\sqrt{3}}{2}=12\sqrt{3}\pi\left(rad/s\right)\)
\(x=6.\cos\left(4\pi.\frac{1}{4}+\frac{\pi}{6}\right)=6.\frac{-\sqrt{3}}{2}=-3\sqrt{3}\left(cm\right)\)
d/ \(v_{max}=\omega A=4\pi.6=24\pi\left(cm/s\right)\)
\(a_{max}=\omega^2A=\left(4\pi\right)^2.6=96\pi^2\left(rad/s\right)\)