S=5cm= 4+1= T+T/6 = 7T/6( do cung ban đầu là 2pi/3, do A=1 nên T=4)
\(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{\pi}=2\)
thời gian đi được = 7*2/6=7/3s.
S=5cm= 4+1= T+T/6 = 7T/6( do cung ban đầu là 2pi/3, do A=1 nên T=4)
\(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{\pi}=2\)
thời gian đi được = 7*2/6=7/3s.
Một vật dao động điều hòa theo phương trình: x= 5cos(10\(\pi\)t-\(\pi\)) cm. Thời gian vật đi được quãng đường 12,5 cm (kể từ t = 0) là
Một vật dao động điều hoà theo phương trình xin 10cos(\(\pi\)t+\(\pi\)/3)cm). Thời gian tính từ lúc vật bắt đầu dao động (t = 0) đến khi vật đi được quãng đường 30 cm là
Vật dao động điều hòa theo phương trình x = 3cos (3πt -pi/3) cm. Khoảng thời gian vật đi quãng đường 5,5 cm kể từ t = 0 là
Một vật dao động điều hòa theo trục Ox có phương trình li độ: x = 6cos (4πt -pi/3) (trong đó x tính bằng cm, t tính bằng s). Khoảng thời gian vật đi quãng đường 45 cm kể từ thời điểm t = 13s là
Một vật dao động điều hòa với phương trình: x=4cos(4\(\pi\)t + \(\pi\)/4)(cm), t tính bằng giây(s). Quảng đường vật đi được sau 0,25 s kể từ khi bắt đầu chuyển động là
Một vật dao động điều hòa dọc theo trục Ox với phương trình: \(x=5cos\left(\pi t+\dfrac{2\pi}{3}\right)cm\). Quãng đường vật đi được từ thời điểm t1= 2(s)đến thời điểm t2= \(\dfrac{17}{3}\)(s) là bn?
Một vật dao động điều hòa theo phương trình x = Acos10\(\pi\)t cm (t tính theo giây). Kể từ thời điểm t= 0, thời điểm vật cách vị trí cân bằng \(\dfrac{A\sqrt{2}}{2}\)lần thứ 2018 là
Một vật dao động điều hòa với phương trình: x = 5cos(4\(\pi\)t) cm, t tính bằng giây. Trong khoảng thời gian 7/6 s thì quảng đường nhỏ nhất vật đi được gần nhất với giá trị
Một vật dao động điều hoà theo phương trình x= 4cos (πt - 2π\3) cm.Trong khoảng thời gian 5 phút vật đi được quãng đường