Gọi số sản phẩm một ngày của phân xưởng là x(x>0)(sản phẩm)
Số sản phẩm thực tế làm một ngày là: x + 5 (sản phẩm)
Số ngày dự định làm: \(\dfrac{1100}{x}\left(ngày\right)\)
Số ngày thực tế làm: \(\dfrac{1100}{x+5}\left(ngày\right)\)
Theo bài ta có số ngày thực tế ít hơn dự định 2 ngày:
\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\)
\(\Leftrightarrow\dfrac{1100x+5500}{x^2+5x}-\dfrac{1100x}{x^2+5x}=2\)
\(\Leftrightarrow\dfrac{5500}{x^2+5x}=2\)
\(\Leftrightarrow5500=2x^2+10x\)
\(\Leftrightarrow2x^2+10x-5500=0\Leftrightarrow\left[{}\begin{matrix}x=50\left(tm\right)\\x=-55\left(loại\right)\end{matrix}\right.\)
Vậy theo kế hoạch mỗi ngày phân xưởng cần sản xuất 50 sản phẩm