Cho mặt cầu tâm O, bán kính r. Gọi \(\left(\alpha\right)\) là mặt phẳng cách tâm O một khoảng h \(\left(0< h< r\right)\) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu tại một điểm B. Gọi CD là một đường kính di động của (C)
a) Chứng minh các tổng \(AD^2+BC^2\) và \(AC^2+BD^2\) có giá trị không đổi
b) Với vị trí nào của CD thì diện tích tam giác BCD lớn nhất
c) Tìm tập hợp các điểm H, hình chiếu vuông góc của B trên CD khi CD chuyển động trên đường tròn (C)
Cho hai đường thẳng chéo nhau \(\Delta\) và \(\Delta\)' có AA' là đoạn vuông góc chung, trong đó \(A\in\Delta\) và \(A'\in\Delta'\). Gọi \(\left(\alpha\right)\) là mặt phẳng chứa AA' và vuông góc với \(\Delta'\) và cho viết AA'=a. Một đường thẳng thay đổi luôn luôn song song với mặt phẳng \(\left(\alpha\right)\) lần lượt cắt \(\Delta\) và \(\Delta\)' tại M và M'. Hình chiếu vuông góc của M trên mặt phẳng \(\left(\alpha\right)\) là \(M_1\)
a) Xác định tâm O bán kính r của mặt cầu đi qua 5 điểm A, A', M, M', \(M_1\)
Tính diện tích của mặt cầu tâm O nói trên theo a, x = A'M' và góc \(\varphi=\left(\Delta,\Delta'\right)\)
b) Chứng minh rằng khi x thay đổi mặt cầu tâm O luôn luôn chứa một đường tròn cố định
Cho một điểm A cố định và một đường thẳng a cố định không đi qua A. Gọi O là một điểm thay đổi trên a. Chứng minh rằng các mặt cầu tâm O bán kính r = OA luôn luôn đi qua một đường tròn cố định ?
Cho hình cầu tâm O bán kính r. Lấy một điểm A trên mặt cầu và gọi \(\left(\alpha\right)\) là mặt phẳng đi qua A sao cho góc giữa OA và \(\left(\alpha\right)\) bằng \(30^0\)
a) Tính diện tích của thiết diện tạo bơi \(\left(\alpha\right)\) và hình cầu
b) Đường thẳng \(\Delta\) đi qua A vuông góc với mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu tại B. Tính độ dài đoạn AB ?
Hình chóp S.ABC là hình chóp tam giác đều, có cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{2}\). Một mặt cầu đi qua đỉnh A và tiếp xúc với hai cạnh SB, SC tại trung điểm của mỗi cạnh
a) Chứng minh rằng mặt cầu đó đi qua trung điểm của AB và AC
b) Gọi giao điểm thứ hai của mặt cầu với đường thẳng SA là D. Tính độ dài của AD và SD
Cho mặt cầu \(S\left(O;r\right)\) tiếp xúc với mặt phẳng (P) tại I. Gọi M là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với I qua tâm O. Từ M ta kẻ hai tiếp tuyến của mặt cầu cắt (P) tại A và B.
Chứng minh rằng : \(\widehat{AMB}=\widehat{AIB}\) ?
Hình tứ diện ABCD có các mặt ABC và BCD là tam giác đều cạnh a, góc giữa đường thẳng AD và mp(ABC) bằng 45 độ. Tính bán kính mặt cầu ngoại tiếp tứ diện.
Hình tứ diện đều ABCD có cạnh bằng a và có đường cao AH. Gọi O là trung điểm của AH. Xác định tâm và bán kính của mặt cầu ngoại tiếp tứ diện OBCD ?
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AA' = a; AB = b; AD = c
a) Hãy xác định tâm và bán kính của mặt cầu đi qua 8 đỉnh của hình hộp đó
b) Tính bán kính của đường tròn là giao tuyến của mặt phẳng (ABCD) với mặt cầu trên