Một công ty xác định rằng tổng chi phí của họ, tính theo nghìn đô-la, để sản xuất \(x\) mặt hàng là \(C\left( x \right) = \sqrt {5{x^2} + 60} \) và công ty lên kế hoạch nâng sản lượng trong \(t\) tháng kể từ nay theo hàm số \(x\left( t \right) = 20t + 40\). Chi phí sẽ tăng nhanh thế nào sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó?
\(C'\left(x\right)=\left(\sqrt{5x^2+60}\right)'=\dfrac{\left(5x^2+60\right)'}{2\sqrt{5x^2+60}}\)
\(=\dfrac{10x}{2\sqrt{5x^2+60}}=\dfrac{5x}{\sqrt{5x^2+60}}\)
\(x'\left(t\right)=20\)
\(C'\left(t\right)=C'\left(x\right)\cdot x'\left(t\right)=\dfrac{100\left(2t+40\right)}{\sqrt{5\left(20t+40\right)^2+60}}\)
\(C'\left(4\right)=\dfrac{100\left(2\cdot4+40\right)}{\sqrt{5\left(80+40\right)^2+60}}\simeq44,7\)