Bài 1: Phương trình mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Một công trường xây dựng nhà cao tầng đã thiết lập hệ tọa độ Oxyz. Hãy kiểm tra tính song song hoặc vuông góc giữa các mặt kính (P), (Q), (R) (Hình 20) của một tòa nhà, biết:

(P): 3x + y – z + 2 = 0;

(Q): 6x + 2y – 2z + 11 = 0;

(R): x – 3y + 1 = 0.

datcoder
30 tháng 10 2024 lúc 13:56

Các vectơ pháp tuyến của các mặt phẳng \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) lần lượt là \(\overrightarrow {{n_{\left( P \right)}}}  = \left( {3;1; - 1} \right)\), \(\overrightarrow {{n_{\left( Q \right)}}}  = \left( {6;2; - 2} \right)\) và \(\overrightarrow {{n_{\left( R \right)}}}  = \left( {1; - 3;0} \right).\)

Ta thấy rằng \(\frac{3}{6} = \frac{1}{2} = \frac{{ - 1}}{{ - 2}}\) nên \(\overrightarrow {{n_{\left( P \right)}}} \) và \(\overrightarrow {{n_{\left( Q \right)}}} \) là 2 vectơ cùng phương. Từ đó suy ra \(\left( P \right)\parallel \left( Q \right).\)

Ta có \(\overrightarrow {{n_{\left( P \right)}}} .\overrightarrow {{n_{\left( R \right)}}}  = 3.1 + 1.\left( { - 3} \right) + \left( { - 1} \right).0 = 0\) nên \(\overrightarrow {{n_{\left( P \right)}}} \) và \(\overrightarrow {{n_{\left( R \right)}}} \) có giá vuông góc với nhau. Suy ra \(\left( P \right) \bot \left( R \right).\)

Ta có \(\overrightarrow {{n_{\left( Q \right)}}} .\overrightarrow {{n_{\left( R \right)}}}  = 6.1 + 2.\left( { - 3} \right) + \left( { - 2} \right).0 = 0\) nên \(\overrightarrow {{n_{\left( Q \right)}}} \) và \(\overrightarrow {{n_{\left( R \right)}}} \) có giá vuông góc với nhau. Suy ra \(\left( Q \right) \bot \left( R \right).\)