\(a,A=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\left(\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(b,A=\dfrac{\sqrt{x}+3-2}{\sqrt{x}+3}=1-\dfrac{2}{\sqrt{x}+3}\)
Để A nguyên thì \(\sqrt{x}+3\inƯ\left(2\right)\)
\(\Rightarrow\sqrt{x}+3\in\left\{1;2\right\}\) ( vì \(x\ge0\) )
Với \(\sqrt{x}+3=1\)\(\Rightarrow\sqrt{x}=-2\) ( loại vì \(\sqrt{x}\ge0\) )
Với \(\sqrt{x}+3=2\) \(\Rightarrow\sqrt{x}=-1\) ( loại )
=> ......
a ) Ngại làm quá >,,<
Ơ nhưng mà phân thức \(\dfrac{x+3}{x-9}\) đáng nhẽ phải là \(\dfrac{\sqrt{x}+3}{x-9}\) chứ nhỉ ???