Cho biểu thức D = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
với \(x\ne9,x\ge0\)
a) Rút gọn D
b)Tìm x để \(D< \dfrac{-1}{4}\)
Bài 1:Cho biểu thức B= \(\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-2}\) (x > 0, x≠ 9)
a) Rút gọn B
c) Giá trị x để B = \(\dfrac{3}{2}\)
Bài 2: Một khu vườn có chuvi = 46 m, nếu tăng chiều dài 5m và giảm chều rộng 3m thì hình chữ nhật mới có chiều dài gấp 4 lần chiều rộng. Tính diện tích khu vườn hình chữ nhật ban đầu
(mink đag cần rất gấp)
Cho biểu thức:
\(Q=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+3}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{14}{9-x}\right).\dfrac{\sqrt{x}-3}{x}\)
a) Rút gọn Q.
b) Tìm GTLN của Q.
cho B=\(\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right)\div\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
a. rút gọn B
b. tính \(\sqrt{B}\) khi \(x=5+2\sqrt{3}\)
c. tìm x để B= \(\dfrac{1}{2x^3-x-1}\)
d. tìm giá trị của x để giá trị của B không lớn hơn giá trị biểu thức \(\dfrac{1}{x+2}\)
Lm nhanh giúp mk nhé mk đang cần gấp
Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(\dfrac{x-2}{x-\sqrt{x}-2}-1\right)\)
a) Rút gọn A.
b) Tìm x để P=2A - \(\dfrac{1}{x}\)đạt GTLN.
Cho A = \(\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
a ) Rút gọn A
b) Tìm x ϵ Z để A ϵ Z
P=\(\dfrac{2\sqrt{x}-9}{\left(\sqrt{x-3}\right)\left(\sqrt{x-2}\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
a) Tìm ĐKXĐ
b) Rút gọn biểu thức P
\(B=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+9\sqrt{x}}{9-x};\left(x\ge0;x\ne9;x\ne16\right)\)
\(B=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1};\left(x>0;x\ne1\right)\)
Rút gọn biểu thức
P=\(\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{1}{\sqrt{x}-3}\)với x\(\ge\)0 ;x\(\ne\)9